The number returned is dependenton the value of Seed. Fach Lime
that IRandom is called, Seed is updated Lo reflect the value
returned. For example:

Die := SUCC {lRandom {Seed) MOD 6);

3.4 Random

This routine returns a pseudo-random real number equally
distributed in the range 0.0 through 1.0. The declaration is:

FUNCTION Random (VAR Seed : Integer) : Real;

Random functions by invoking IRandom and dividing the result
by 32767, For example:

S$ample := Random (Seed) * Population;
3.5 Sound

This routine generates a sound of a specificd Frequeney, Duration
and Volume. The declaration is:

PROCEDURE Sound (Frequency, Duration, Yolume : Integer);
where;

® Frequency is & number in the range 1..2505 specifying the
frequeney of the sound. A number 9 less than that given to Color
Basic will produce about the same piteh.

¢ Duration is the length of time in 16ths of a second that you want,
ta make the sound persist.

® Volume is a number in the range 0..31 specifying the volume of
the sound. Zern indicates silence, 31 indicates Tull volume.

For example:
Sound (150, 16, 24);

4 Direct File 1/0

The routines in this section provide the eapability of directly
accessing records in a disk file. These routines allow you Lo posilion
to a particular recard by record number and then read or update
the record. Inaddition, you can add records te the end of an existing
file.

4.1 Types and Constants
Hefore describing the routines, it is necessary 1o define the types

that are used by each. The INTERFACE file EXTRA/EXT
contains all the definitions of these types.

SeclorData - This is 1 type which represents one sector's worth of
data:

TYPE SectorData = ARRAY{0..255] OF Char;

DirectData - This is a type which represents the information used
bv the direct [/0 routines:

TYPE DireciData = RECORD
FirstGranule : Integer;
GranuvleTable : SectorData;
END;

4.2 OpenDirect

This routine initializes a variable of type DireciData [or Yuler use
by PositionFile and AppendFile. The deelaration is:

FUNCTION OpenDirect (VAR Disk : FILE OF ..;
VAR Table : DirectData) : Boolean;

The file Disk must be a typed filc (not Textor FILE OF Char) and
must have been openned via a RESET. Table is a variable of type
DirectData that OpenDirect is poing to initialize. For example;

RESET (DiskFile, FileName);
IF NOT Opsenbirect (DiskFile, Tablg)
THEN ... (* error *)

OpenDireet returns a 'TRUE if the open was successful. If it
returng a FALSE, you can check the error status of the specified
file (via FILEERROR) to determine the cause.

16

4.3 PositionFile

This routine positions the file to a particular record number within
the file. The declaration is:

FUNCTION PositionFile {VAR Disk : FILE OF ..;
VAR Table : DirectData;
RecNumber : Integer) : Boolean;

Where Table iz ihe variable that was previously initialized by
OpenDirect and RecNumber ig an integer in the range 0..32767.
The first record in the file 18 numbered 0.

After vou position the file, you can either use Get to read the
specified record or UpdateFile to write out the current record. For
example to position and then read a record into DiskRee:

IF PositionFile {DiskFlle, Table, RecNumber)
THEN BEGIN

Get {DiskFile);

DiskRe¢ := DiskFile - ;

PositionFile returns a. TRUE if the operation was successful. I it
returns a FALSE, you can check the error status of the speeified
file (via FILEERROR) (v determine the cause. If FILKERR{OR
returns a zero, then the eause wasa record number that was outside
the limits of the file. In this case, the position of the file 15 not
changed.,

4.4 UpdateFile

This routine writes the record in the (e window o the current. file
position and then positions the file to the next record. The
declaration is:

FUNCTION UpdateFile (VAR Disk : FILE OF ...) : Baolean;

An example update sequencce would look like this:

IF PositionFile (DiskFile, Table, RecNumber)
THEN BEGIN
Get (DiskFile);
DiskRec := DiskFile - ;
..- (* modify DiskRec *)
IF PositionFile (DiskFile, Table, RecNumber)
THEN BEGIN
DiskFile ~ := DiskRec;
IF NOT UpdateFile (DiskFile) THEN ...

UpdateFile immediately writes the record to disk and returns a
TRUE if the update was suecessiul. IT il returns a FALSE . you can
check the error status of the specified file (via FILEERROR) to
determine the cause.

4.5 AppendFile

This routine adds the record currently in the file window 1o the end
of a file which is being used for direct aceess. The declaration is:

FUNCTION AppendFila (VAR Disk : FILE OF ...;
VAR Table : DirectData) : Boolean;

Although you can use Lhis routine to sequentially build a file, il is
not designed for that purpose. Its purpose is to add records to an
exigting file which is heing updated dircetly. It is a rclatively
expensive routine in Lthal il forces the record to be written to disk
immediately and the disk directory (o be updated. Use the regular
Rewrite, Write and Close [/0 staterments to efficiently build a file
from scrateh. An example of nse:

DiskFile - = Data;
IF NOT AppendFile (DiskFile, Table)
THEN ... (* error *)

AppendFile returns a TRUE if the append was successful. If it
returns a FALSE, you can check the error status of the specified
file (via FILEERROR) to determine the cause.

4.6 DeleteFile

. This routine deletes an openned file from the diskette. The file can
have been opehned via cither a REWRITE or RESET. The
declaration is:

PROCEDURE DeleleFile (VAR DiskFile ; Texi);

For example:

RESET (DiskFile, FileName);
DeleteFile (DiskFlie);

4.7 Overall Example

The following example is a very simple file maintenance program
that uses DEFT EXTRA 1o maintain a dircet acecss file.

%C EXTRA/EXY
PROGRAM DigkDirect {Input, Output);

TYPE DiskData= RECORD
Data:STRING(20);
END:;

VAR |:Integer;
FileName : String;
DiskRec ; DiskData;
DiskFile : FILE OF DiskData;
Table ; DireciData;
Command : Char;

BEGIN
PAGE;
WHILE TRUE DO BEGIN
WRITE (‘ENTER COMMAND: °);
READLN {Command);
CASE Command OF
" : EXIT; (* exit from program *}
'C’ : BEGIN {* create a file *)
WRITE {{ CREATE FILE:");
READLN {FlleName);
REWRITE (DiskFile,FileName);
CLOSE (DiskFile);
END;
'O’ : BEGINM {* open a file *)
WRITE (‘OPEN FILE:");
READLN (FlieName);
RESET (DiskFile FileName);
WRITELN ("OPEN: ',
OpenDirect (DiskFile, Table));
END;
'S’ : BEGIN {* sequencially read a file *}

WHILE NOT EOF {DiskFile) DO BEGIN
READ {DiskFile, DiskRec);
WRITELN (DiskRec.Data);
END;
END;
‘A’ : BEGIN (* append a record *)
WRITE (‘DATA: °);
AEADLN (DiskRec.Data);
DiskFile ~ := DiskRec;
WRITELN (‘APP: *,
AppendFile (DiskFile, Table)),
END;
'R*: BEGIN (* read a record *)
WRITE (‘RECORD NUMBER: ‘);
READLN (1);
WRITELN (‘POS: °,
PositionFile {DiskFile, Table, 1)};
GET (DiskFile);
DiskRec = DiskFile " ;
WRITELN (DiskRec.Data);
END;
‘U’ : BEGIN {* update a record *)
WRITE (RECORD NUMBER: };
READLN (1)
WHRITE (‘DATA: °);
READLN (DiskRec.Data);
DiskFile ° = DiskRec;
WRITELN (‘POS: ,
PasitionFile (DiskFile, Table, 1));
WRITELN (‘UPD: ‘, UpdateFile (DiskFile));

END
ELSE WRITELN ('ILLEGAL COMMAND")
END;
END;

END.
This program prompts the user for a one character command. The
command cntercd is used in the main CASE statement to
determine what funeiion to perform:

e X indicates to terminate the program,

® C indicates to ereale an empty file, Normally you would also
WRITE out all the initial records in the file. In this program, we

20

will use the A command to put records in the file.

e Oindicatestoopen an existing file for direet aceess. The resultof

the OpenDirect call {1 or 0) iz displayed to indicate whether the
. open was successful.

Sindirates to read the file from the current position, The record
currenily in the file window is the first one printed out. If the last
function was an R or U, then the record associated with that call
will be displayed.

® A indicales Lo add a record to the file, The result of the
AppendFile call is displayed on the screen. Natice that vou put
the record to be written in the file window beflore calling
AppendFile.

o K indicates to read a particular record. The result of the
PositionFile call is displayed. After positioning, a Get is used to
actually read the data into the file window. An assignment
statement is then usecd to copy the data into a variable,

e U indicates {o updale a particular record. The resuit of the

PositionFile and UpdaieFile calls are both displayed on the

. screen, Naotice that you put the reeord in the file window before
calling UpdateFile.

You don't use the Close statement on a file openned for direct
aceess. This is because there is no buffering of data to be written to
disk.

5 Absolute Sector 1/0

These two routines provide the ability to read and write to absolule
sectors on disk.

5.1 ReadSector

This routine reads in an absolute sector. The declaration is;

FUNMCTION ReadSeclor (Drive, Track, Secior : Integer;
VAR Data : SectorData) : Boolean;

where:

® Drive is the diskette drive number (0.,3).

® Track is the track number (0..34).

¢ Sector is the sector number (1..1%}).

® Data is the returned data.

ReadSector returns a TRUE if the read was successful and a
FALSE if an I/O error occurred.

5.2 WriteSector

This routine writes out an ahsoclute sectar. The deeclaration is:

FUNCTION WrlleSector (Drlve, Track, Sector : Integer;
VAR Data : SectorData) : Boolean;

where:

¢ Drive is the diskette drive numher (0..3).
® Track is the track number (0..34).

® Sector is the sector number (1..18).

® Daia is the data to write out.

WriteSeetor returns a TRUE if the write was suceessful and a
FALSE if an /0 error occurred,

22

6 Technical Information

This portion of the DEFT EXTRA User’s Guide describes the
major internal Paseal runtime library interfaces. You can use this
information to directly eall these routines from assembly language
or to replace them with your own routines. In general. you can
replace an individual routine by modifying PASBOOT to patchina
JMP to vour routine at the beginning of the routine to be replaced.

You access these routines by executing an LESR or JSR to the
symbol name given below and then declaring that symbol in your
assemhbler program with an EXT statement. You may first have to
either load registers or push parameters on the stack. Values will
be returned either in registers or on the stack. The symbol names
and calling conventions are described for each routine. Unless
alherwise stated, the values of the D, X, Y and CC registers will be
maodified by the rouline,

6.1 I/0 Routines

The routines in this section make up the bulk of the runtime library
and are responsible for providing ASCII/Binary duta conversion,
buffering and daia transfer to and from disk, cassette, keyboard,
screen and printer,

File Control Block (FCB) Format

In order to use any of these routines, vou will have Lo supply a File
Control Block or FCR. The definitions of the ficlds in the FCB are as
follows:

FCBPOINTERZ EQU 0 File Painter

FCBNAME EQU 2 File Name

FCBEXT EQU 10 Fila Name Extension
FCBDEVNO EQU 12 Device Number
FCBSTATE EQU 14 Stale of Last Operation
FCBTYPE EQU 15 File Type

FCBGRAN EQU 16 Current Granule
FCBNEXTG EQU 17 Next Granule
FCBTRACK EQU 18 Track Numhber
FCBSECTR EQU 19 Current Sector
FCBLSECT EQU 20 Last Sector in Granuile
FCBOPEN EQU 21 Open Type
FCBINDEX EQU 22 Indeximo FCBBUFR
FCBBUFSZ EQU 24 Current Buffer Size

FCBLAST EQU 26 Last Sector Size

FCBTYPESIZE EQU 28 Record Type Size
FCBBUFR EQU 30 Secior Buffer
FCBBASESIZE EQU 286 Base Size of FCB
FCBRECORD EQU 286 Racord Ofiset

The FCBOPEN field is initialized via either the DETRESET or
DFTREWRITE roulines. Its possible values are:

FCBOPENREAD EQU $AA Open for seqread
FCBOPENWRITE EQU scc Open for seq write

The FCBSTATE field is initialized via DFTRESET or
DFTREWRITE and then updated by each of the other 1/0 routines.
Its possible values are:

FCBSTOKAY EQU 0 Successful Operation
FCBSTEOF EQU $FF End of File
FCBSTIOERR EQU S$FE 170 Error
FCBSTNOTFND EQU S$FD File not found
FCBSTILLEGAL EQU $FC lllegal Operalion
FCBSTFULL EQU $FB Device Full

In general, on return from any of the following routines you will
have to check the FCBSTATE field to determine whether the
corresponding operation completed successfully.

DFTRESET (in PASIO) - This routine prepares an FCB for
sequential input. The calling conventions are as follows:

G Entry:
® X contzins the FCB address.

® Y contains the address of a STRING containing a standard file
name,

e D) contains the address of a STRING containing the defauli file
name extension.

On Return: FCBSTATE contains the result,

DFTREWRITE (in PASIOQ) - This routine prepares an FCB for
sequential output. The calling cunventions are as follows:

On Foatry:
® X contains the FUB address,

24

¢ Y contains the address of a STRING containing a standard file
name.

¢ D containg the address of a STRING containing the default file
name extension.

Om Return: FCBSTATE contains the result.

DFTCLOSE (in PASIO) - This is the same as the CLOSE routine
except that the calling conventions are as follows:

On Entry: X contains the FCB address.
O Return: FCBSTATE contains the result.

DFTREADCHAR (in PASIO) - This routine is used to read a
single characier from the next line in a file. It is used by the READ
and READLN Paseal constructs.

On Entry: Before calling this routine you must push three 16 bit
parameters onto the stack in the following order:

1. FCB address
2. address at which to place the character
3. field size (ignored, but should he 1)

On Retuwrn: FCBSTATE contains the result and the last two
parameters are popped from the stack. The FCB address will
rernain on the stack.

DFTREADINT (in PASIO) - This routine is used to read the
ASCII eguivalent of a single integer from the next line in a file and
convert it into binary. It isused by the READ and READLN Paseal
constracts.

On Entry: Before calling this routine you must push three 16 bit
parameters onto the stack in the following arder:

1. FCB address
2. address at which to place the binary integer

3. binary integer bvte size (either 1 or 2)

On Return: FCBSTATE contains the result and the last two
parameters are popped from the stack. The FCB address will
remain on the stack,

DFTREADREAL (in PASREAL} - This routine is used to read
the ASCII equivalent of a single real number from the nextlinein a
file and convert il into binary. This routine {2z used by the READ
and READLN Pascal constracts.

On Entry. Before calling this routine you must push two 16 bit
parameters onto the stack in the following order:

1. FCB address
2. address at which to place Lhe binary real number

Om Return: FCBSTATE contains the result and the last parameter
is popped from the stack. The FCB address will remain on the
stack.

DFTREADSTRG (in PASIO) - This routine is used to read the
nextline in a file into a STRING variable. It is used by the READ}
and READLN Paseal construets.

On Enitry: Before calling this routine you must push three 18 bit
parameters onto the stack in the following order:

1. FCB address
2, address at which to place the STRING
3. maximum STRING size

(O Retuwrn: FCRBSTATE contains the result and the last two
parameters are popped from the stack. The FCB address will
remain on the stack.

DFTREADTYPE (in PASIO) - This rouline iz used lo read a
number of bytes from a file. This routine is used by the READ
Pascal construct.

On Entry: Before calling this routine you must push three 16 hit
paramcters onte the stack in the following order:

1. FCB address
2. address at which to place the bytes read
3. the number of bytes to read

On Return: FCBSTATE contains the result and the last two
parameters are popped from the stack. The FCB address will
remain on the stack.

26

DFTREADLN (in PASIO) - This routine is used to read past the
next carriage return in a file, [t i3 used by the READILN Pascal
construet in order to skip past the end of line.

On Entry: Before calling this routine you must push one 16 bit
parameter onto the stack. This parameter is the FCB address.

On Retywrn: FOCRSTA'TE contains the result and the FCIR address is
popped from the stack.

DFTWRITECHAR (in PASIO) - This routine is used to write a
character to a file. 11 is used by the WRITE and WRITELN Pascal
constructs.

On Ewntry: Before calling this routine you must push three 16 bit
parameters onte the stack in the lollowing order:

1. FCB address

. eharacter (in low hyte) to write

ASCII field size, number of ASCH bytes to write. The character
18 lefi-justified within this field.

(. Return: FOCBSTATE contains the result and the last twao
parameters are popped from the stack, The FOB address will
remain on the stack,

DFTWRITEINT (in PASIQ) - This routine is used to convert an
inlcger toits ASCll equivalent and write it to a file. IUis used by the
WRITE and WRITELN Paseal constructs.

On Eniry: Before culling this routine you must push three 16 bit
parameters onto the stack in the following order:

1. FCB address

2. binary integer to write

s bS

3. ASCII field size, numberaf ASCII bytes tn write. The number is
right justified within this field.

On Return: FCBSTATE contains the result and the last two
parameters are popped from the stack. The FCB address will
remain on the stack.

DFTWRTREAL (in PASREAL)- This routine i= used to convert
areal number toits ASCII equivalent and write it to a file. Tt is used
by the WRITE and WRITELN Pazcal constructs.

On Entry: Before calling this routine you must push four 16 bit
parameters onto the stack in the following order:

1. FCB address
2 addregs of the real number

3. ASCIIfield size, numberof ASCII bytes to write, Thenumber is
right justified within this field. If the field is too small, then
asterisks are output.

4. the number of decimal positions to the right of the decimal point.
If thiz number is negative then seientific notation is nsed.

On Return: FCBSTATE contains the result and the last three
parameters are popped from the stack. The FCB address will
remain on the stack.

DFTWRITESTRG (in PASIQ) - This routine is used to write a
STRING to a file. It 15 used by the WRITE and WRITELN Pascal
constructs.

On Entry: Before calling this routine you must push three 16 bit
parameters onto the stack in the following order:

1. FCB address
2. address of the STRING

3. ASCII field size, number of ASCII bvtes to write. The 8STRING
is left-justified within this field.

On Return: FCBSTATE contains the result and the last two
parameters are popped from the stack. The FCE address will
remain on the stack.

DFTWRITETYPE {in PASIO) - This routine is used to write a
number of bytesto a file. [tis used by the WRITE Pascal consiruct,

On Fatry: Before calling this routine you must push three 16 bit
parameters onlo the stack in the following order:

1. FCB address
2, address of the bytes to wrile
3. number of bytes to write

On Return: FCBISTATE contains the result and the last two
parameters are popped from the stack. The FCB address will

28

remain on the stack.

DFTWRITELN (in PASIO)} - This routine is used to write a
carriage return Lo the file. It is used by the WRITFLN Pascal
construct.

On Entry: Before calling this routine you must push one 16 bit
parameter onto the stack, This parameter is the FCR address,

O Return: FCBSTATE contains the result and the FCB address is
popped from the stack.

DFTDISKREAD (in PASDISK) - This routine is used to read a
sector from disk into the sector buffer of the F'CB.

On Entry: The X register points to an FCB with the following fields
filled in:

¢ FCBDEVNO contains the drive number
s I'CBTRACK contains the track number
» FCBSECTR contains the sector number

On Return: All registers are preserved and the fields FCBSTATE
and FCBBUFR have been filled in,

DFTDISKWRITE {in PASDISK) - This routine is used to writca
sector Lo disk from the sector buffer of the FCB.

On ntry: The X register points to an FCB with the following fields
filled in:

¢ FCEDEVNQ contains the drive number
s FCETRACK contains the track number
¢ FCBESECTR contains the seclor number
& FCBBUFR filled in with the data to be written

On Relurn: All registers are preserved and the field FCESTATE
has been filled in.

DFTREADTAPE {in PASCASST)-'This routine is used to read a
block from cassette tape into the sector buffer of the FCER.

On Endry: The X register points to an FCB.

O Retwrn: All registers are preserved and the following FCB fields
are filled in:

29

® FCBSTATK conlains the error condition

® FCBGRAN contains the block type

¢ 'CBBUFS?Z conlains the size of the block read
¢ FCBBUFR contains the actual data

¢ FCBINDEX conlains a zero

DFTWRITETAPE (in PASCASST) - This routine is used io
write a block to eassette tape [rom the sector buffer of the FCB.

On Entry: The B register containg the block type and the X register
points to an FCB with the following fields filled in:

s FCBRUFSZ contains the size of the hlock
¢ PCBBIUIFR filled in wilh the data to be written

On Beturn: Al regigters are preserved and the field FCBSTATE
has been filled in. In addition, the field FCBBUFSZ is set to zero.

DFTPOLLKEY (in PASKEYBDY) - This rouline polls the
keyhoard to determine whether a key has been depressed. It
performs the dehounce and repeat functions. .

On Eatry: No entry conditions

{n Retwrn: All registers preserved cxeept the A and CC registers.
The Z bit in the CC register will be a 1 and the A register will equal
zeroif no character iz presen(. Il the Z bitisa 0, then the A register
contains the ASCII character depressed.

DFTREADKEYBD (in PASKEYBD) - This routine runs the
cursor, performs line edilling and reads in an entire line's warth of
data.

{n Entry: The X register contains the FCB address.

On Return: All registers are preserved and the fallowing [ields are
filled in;

o ["CBINDYEX is et to zero

® FCBBUFSZ is set to the gize of the line read

¢ FCRBBUFR contains the data

& FCBSTATE contains the resulting EQF status.

30

DFTSCREENOUT (in PASKEYBD) - This routine outputs a
character to the screen.

On Entry: The A register contains the ASCIT character to output.
On Return: All registers are preserved.

DFTRS2320UT (in PASKEYBD) - This routine cutputs a
character to the RS-232 port.

On Fwtry: The A regisier conlaing the ASCTI characier io cutput.

Om Return: All registers arc preserved.

6.2 General Utility Routines

DFTMULTIPLY (in PASRUNTM) - This routine is used to
multiply two 16 bit values and return a 16 bit product upen return.
The multiplication is performed using twos compliment binary
arithmetic.

On Fntry: Before calling, PSHS the two 16 bit numbers to be
multiplied.

On Retwrn: The D register eontains the 16 bit result and all
paramelers are popped from the stack.

DFTDIVIDE (in PASRUNTM]} - This routine is used to divide
one 16 bit number into another 16 bit number. The divisien is
performed using twos compliment binary arithmelic,

On ntry: Before calling, PSHS in the following order:
1. the 16 bit dividend
2. the 18 bit divisor

(O Ketwrn: The dividend is replaced with the quotient and the
divisor is replaced with the remainder

DFTHEX (in PASRUNTM) - This routine is used to convert
binary data into a hexadecimal representation expressed in ASCIHI
characters. The calling conventions are as follows:

O Entry:

¢ the X register contains the address in memory where the binary
data which is to be converted resides

31

& the Y register contains the address of the area in memory which
is to contain the the results of the HEX conversion

® (he A register contains the number of bytes of hinary data which
are to be converted

On Retwrn: The area in memory addressed by thecontents of the Y
register now contains the hexadecimal representation in ASCII
form and all register contents are preserved.

DFTSTRUCTCMP (in PASRUNTM) - This routine compares
two blocks of memory and sets (he condition codes appropriately.

O Emtry: Before ealling, PSHS in the following order:
1. the address of the first memory block

2. the address of the second memory block

3. the number of bytes to compare

On Return: the first memory bloek is compared (logically
subtracted) from the second memory block on a byte by byte basis.
The eondition codes are set appropriately, the parameters are
popped from the stack.

DFTSTRCTLOAD {(in PASRUNTM) - This routine loads an area
of memory onto the stack.

On Entry: Before calling, PSHS in the following order:
1. the address of the memory area to load
2. the number of bytes to load

On Return: the parameters are popped from the stack and the
memoty area has been pushed onlo the stack.

DFTSTRUCTMOV (in PASRUNTM) - This routine copies a
block of memory,

On Entry: Before calling, PSHS in the following order:

1. the address of where you wanl the memory copied to

2. the address of where you want the memory copied from
* 3. the number of bytes to copy

On Relurn-the memory arca is copied, the parameters are popped
from the stack.

32

6.3 Real Number Routines

These routines provide the real arithmetic capability for Pascal.
Remember that a real variable or constant is 6 bytes long but that
an cxtra byvie (for a total of 7) is always used when a real iz loaded
onto the stack in order to limit loss of precision.

DFTREALLOAD (in PASREAL) - This routine loads a real
number onto the stack.

On Entry: the address of the real number to be loaded onto the stack
1s has been pushed on the slack.

On Return: the address has been popped and the real number has
been loaded on the stack.

DFTREALSTORE (in PASREAL) - This routine stores a real
number from lhe stack into a specific memory location.

On Eatry: parameters are pushed onto the stack in the following
order: .

l.- the address at which to store the real number.
2. the real number itself.

On Return: both the address and the real number are popped from
the stack.

DFTREALNEG (in PASREAL) - This reuline negaies a real

number on the stack.
On Entry: the real number 10 be neguled is at the top of the stack.
Om Return: the negated number is left on the stack.

DFTREALABS (in PASREAL) - This routine returns the
ahsolute real value of a real number.

O Entry: the real number is at the top of the stack.
On Return: the absolute real number is left on the stack.

DFTREALFRACT {in PASREAL)} - This routine returns the
fractional portion of a real number.

On Enbry: the real number is at the top of the stack.

On. Return: he fractional real number is lefl on the stack.

33

DFTREALADD (in PASREAL) - This routine adds two real
numbers.

On E'mtry: the two real numbers to add are at the top of the stack.
On Return: the two real numbers arc replaced with their sum,

DFTREALSUB {in PASREAL) - This routine subtracts two real
numbers,

On Enbry: the subtrahend is al the top of the stack and the minuend
is the next number down.

O Retwrn: the two real numbers are replaced with their difference.

DFTREALMUL (in PASREAL) - This routine multiplies two
real numhers.

On Entry: the two numbers to multiply are at the top of the stack.
O Return, the two real numbers are replaced with their product.

DFTREALDIV (in PASREAL) - This routine divides one real
numhber hy another.

On Entry: the divisor is at thetop of the stack and thedividend is the
next number down.

On Return, the iwo real numbers are replaced with their quotient.

DFTREALCMP (in PASREAL)- This routine compares ane real
number from another.

On Intry: the subtrahend is at the top of the stack and the minuend
ig the next number down.

On Return: the two real numbers are popped from the stack and the
CC register is sct aceordingly.

DFTINTTOREAL (in PASREAL) - This routine converts an
integer to a real.

On Futry: the 16 bil integer to be converted to a real is at the top of
the stack.

On Return: the 16 bit integer is replaced with the corresponding
“real number.

34

6.4 String Routines

These routines operate nn Pascal varying length strings. The first
byte of the string is a length (0.255) with the remaining bytes
containing the actual ASCII characters.

DFTSTRSTRCMY (in PASSTRNG) - Thiz rautine compares
(logically subtracts) one string from another. The comparison is
done 1 byte al a time until unequal bytes or the end of one of the
strings 15 detected. If the end of astriny is reached, then the string
lengths are compared and the result returned.

On Engry: Before calling you must push two 16 hit parameters onto
the stack in the following order:

L. the address of the subtrahend string.
2. the address of the minuend string.

O Return: both parameters are popped from the stack and the CC
register is set aceordingly.

DFTSTRSTRCPY (in PASSTRNG) - This routine copies one
string to another. The length of the copy is delermined by the length
of the souree string.

On Entry: Before calling you must push two 16 bit parameters onto
the stack in the following order:

1. the addressz of the destination string.
2. the address of the source string.
Cm Retwrn: both parameters are popped from the stack.

DFTSTRSTRAFPP (in PASSTRNG) - This rouline appends one
string to another.

On Entry: Before ealling you must push two 16 bit parameters onto
the stack in the following order:

1. the address of the destination string.

2. the address of the source string.

O Return: both parameters are popped from the stack.

DFTCHRSTRCPY (in PASSTRNG) - This rouline copies a
character to a string.

O Elntry: Before calling you must push two 16 bit parameters onto
the stack in the following order:

1. the address of the destination string.
2. the character {in the low order byte) to be copied.
Om Belwrr: both parameters are popped from the stack.

DFTCHRSTRAPT (in PASSTRNG) - This routine appends a
character to a string.

On Entry: Before calling you must push two 16 bit parameters onto
the stack in the following order:

1. the address of the destination string.
2. the character (in the low order byte) to be appended.
On Retwrn: both parameters are popped from Lhe stack.

6.5 DEFT Object File Format

The obicet file is a sequential set of ASCII records produced by the
compiler or assembler. These records all contain a single ASCII
character Lype code, a sel of parameters and a carriage return. The
number and typc of paramcters required varies depending on tyvpe
code. Following is a list of the codes and their parameter formats.

(A) Absolute Definition - Defines a global svmbol with an absolute
value. Two parameters are required.

symbol 12 ASCI
value 4 HEX

{(B) Breakpoint - Used o specify that a hreakpoint instruection
($3F) should be included if the Symbolic On-lLine Debugger is
included in the binary. If debug is not specified to the linker, then a
NOP ($12) is generated. There are no parameters for this code.

{C) Comment - Used to specify a comment to be printed by the
Linker on the link map. The single parameter contains the
comment.

comment {1-254) ASCII

(D) Define Storage - Used o reserve storage. A single parameter
specifies the amount to reserve,

amouni 4 HEX

i)

{F) Fix-up - Used to fix-up a forward branch. The branch should
come to the curreni loeation. The location of place to put the offset is
the single parameter.

location 4 HEX

(J) Library Section - Marks the heginning of alibrary sectioninan
ohjeet library. This will be the [irst record in an object library.

section name 8 ASCI

{K) Library Public Definition - Identifies a public gymbol which
is defined within this library section. After a J record, all the K
records for a section will always immediately follow.

symbol name 12 ASCI

(L) Loeal Absolute Reference - Specifies the requirement for an
ahsolute address generation. The single parameter specifies the
offset Lhat should be added to module’s base address. Note that the
presence of this code makes the resulting binary file non-PIC.

oliset 4 HEX

{M) Main Entry Point - Specifies the place where exceution should
hegin in the resuiting binary file. This code has no parameters.
FExecution will hegin at the point in the object where this type is
encountered.

(P) Program Language Processor Marker - Identilies the
language processor that produced the object file and provides
debug and stack information for the linker and symbolic debugger.

language type 1 ASCIl (P-Pascal, A=Assembler)
siack req 4 HEX

reserved 1 ASCIl

debug table off4 HEX

(R) Relative Definition - Used to define a glohal symbal which 15
relative to the beginning of the current madule. The two
parameters supply the symbol name and its offset from the current
module.

symbol name 12 ASCH
ofiset 4 HEX

(8) Sepment - Used to define a PIC sepment of code. The parameter
following Lhe code is & variable length value containing the actual

code to insert.
code segmant (2-254) HEX

(X) Absolute External Reference - Used to specify that a
PURLIC symbol is to have its absolute value placed here. The
parameters specily Lhe symbol name and offset to be added. Note
that if the corresponding symbol was defined via an R then Lhe
resulting binary file is not PIC.

_symbol name 12 ASCH
offset 4 HEX

{Y) Relative External Reference - Used to specify that a relative
nffset 1o 2 PUBLIC symbol is to placed here. The paramelers
spevify the symbol name and offset 1o be added. Note that if the
corresponding symbul was defined via an A then the resulting
binary file is not PIC.

symbol name 12 ASCII
offset 4 HEX

38

