zeroth CaolorList {(elements 1 through 6)
firsi ColorList {(elements 1 through 6)
second CotorList {elements 1 through 6)

two hundredth Colorlist (elements 1 through &)

Alternate {equivalent) forms of multiple dimension ARRAY
dleclarations are as follows:

TYPE ColorPlane = ARRAY[0..200] OF ARRAY[1..6] OF Color:;
or
TYPE ColorPlane = ARRAY[0..200, 1..6] OF Color;

Nute that thereis no limit to the number of dimensionz allowed and
that cach dimension can be of a different ordinal type.

The predefined type streng is actually an arrag{n.80] OF chnr,
DEFT Pascal supports a numberaof language extensions associated
with this fype. See Advnnced Pascal for language extensions on both
strings and arrays.

. 5.6 Records

A record is a ecllection of data of diverse types which are located
contiguously in memory in the order in which they appear in the
record, Bach data element or item is referred to as a leld. A fleld
may be of any fype. This means that a record field may be an array,
another recard, a set, and so on. The general form of a record
definition s us follows:

RECORD
<field list>>
END
Where the <Zfield list>> has a <[ixed pari>-and/or a <<variant part >

The < fixed part’> is a group of fields which are declared very much
likevariabies. The following isan example of a RECORD with only

. a <fixed part>;

Background 17

TYPE Employee = RECORD

Name : String {20);
Street, City : String (20);
State : String (2);
ZipCode : String (5);
Number : Integer;
END;

In addition to a <fixed part>> & RECORD can also have a <variant
part> Thig part describes several elternative <<field list>>s which
dre located in the same area of memory. This allows vou to deseribe
the same areanf memory inmore than one way. The general form of
the <Zvariant parl>> is as follows:

CASE [<lidenlitier>:] <type identifier>> OF

<Zconstant>, ... ,<constant> : { <{ield list>> };

<constant>, ... ,<{constant>-: { <[field list>)

The <lidentifier>>: following the CASE keyword is optional and if
present defines the last furzed ficld in the record. The <econstant™s
musi all be of the same {ype as the <lype identifier>>. Each (<field
list>>) begins at the same position in the reeord. The sizc of therecord
will be determined by the size of the largest (<field lisi>>). The
fullowing exumple should make things more obvious:

18 Background

TYPE JobType = (Manager, Worker, Secretary);
Employee = RECORD

{* Fixed Part Starls Here *)

MName : String (20);

Address: RECORD
Street, City : String (20);
State : String (2);
ZipCode : String (8);
END;

Number : Integer;

(* Variant Part Starts Here *)
CASE EmployeeType : JobType OF

Manager : (TotalWorkers : Integer;
SecName : String (20)};
Worker : (ManagerNbr : Integer;
TotalToals : Integer;
RoomNumber : integer);
END;

In this case we have a <<variani pari> based on the employee’s job
lype. The fields following the manager constant deseribe the
information required for a manager. The fields [ollowing the
worker constant desceribe the information required for a worker.
Only one <field set> or the other will be present in any given
ogeurance of an employee type.

Note that Lhe size of Employee is 21 (Name) + 51 (Address) + 2
{(Number) + 1 (EmployecTypce} + the size of the largest varianl
which is the onc represented by the manayer constant {(which is 23).
Although not shown here, ihe <field lists:>> in the <variant part>
can lhemselves have <variant parts:>.

5.7 Pointers

A poimter is & reference to a specific instance of a type. In stundurd
Pascal, this instance is created via the NEW procedure. A pointer is
hasically the memory address of a variable of a speeific fype. You
can create a pointer type by preceding any type delinition with an
uparrow { -). The general form of a poinfer type is:

<type definition>

Backgrount 19

An examyple painter type definition is:
TYPE EmployeePtr = " Employee;

This defines a Lype called employeepir which is a pointer to @ record
type ealled employee. you can ereate an instance of employee using
the N W procedure as follows:

MEW (EmployeePtrVar);

This altocates memory for an instance of employee and sets the
memaory address of thal inslanee in lhe variable called
employeeptrvar which is of type employeentr.

The size of & poinler lype is always 2 bytes regardless of Lhe size of
the type that it is referencing. See Advanced Pascal for DEFT
Pascal extensions on the use of pointer types.

5.8 Files

In Paseal, both fales and arroys are lists of elements. With an arroy
each element can be randomly accessed. With a file each element
can he anly sequentially aceessed. Files are the struetured fypethat
represent periperal devices such as tape, disk, printer, keyvboard
and screen.

In Puscal, each element of & file can be ol any type. File types other
than file of char are used to transfer oceurances of the binary image
nf the fype’s internal representation to and from I/0 devices. A fileof
chor has special (hut standard Pascal) properties which provides for
automatic conversion between the internal binary representation of
data and the external ASCII representation. A eomplete cxplanation
can be found in the section on faput/ Cntput. The standard predefined
typeidentifier text (file of char) can be used in file type declarations:

TYPE ThisType = FILE OF Char;
ThalFile = Text;

Both of thesc deelarations define equivalent fype 1dentifiers, Note
thata FILFK of a given type has a size which is equal to the size of the
type plus 286 bytes.

20 Background

59 PACKED Types

The reserved word PACK KD may precede either set, array, recnrd
or file in a type declaration. In standard Pascal, this reserved word
indicates that the corresponding structured typeshould be organized
to occupy the least possible amount of memeory. There are
subsequently sume resiriclions on the use of these packed bypes,

With the DEFT Pascal Compiler, the keyword PACKED is
allowed bul ignored in set, array, record and file type declarations,
This means that the memory requirements don't change and the
restrictions are not imposed on the resulting types. An example of
use is as follows:

TYPE ColorList= PACKED ARRAY[1..6] OF Color;

Backgrounid 21

6 Variables

A variable in Pascal represents a specific memory allocation of a
type. More important is when that memaory allocation is made.

6.1 Automatic Allocation

In BASIC, a variable is atlocated memory when it is first used. In
assembly language a variable is allocated memory when the
program is loaded into memory (provided it was declared with an
RMB opecode).

Inthe section on The Pascol Program the block structure of Pascal is
explained. Constants, types, procedures, functions and variables
become known only when the blocl in whieh they are declared is
activated. Flor variables, this also causes the memory for them to be
allocated. When the block is deactivated, not only do the identifiers
become unknown but the memory allocated to the variables is
deallocuted.

The implications of this allocation scheme are two-fold:

1. The value of any variable is undefined when the block is [irst
activated. This ig true even if the block was previously activated
and deactlivated. Variables will not assume the value that they
had when the block was last deactivated.

2. Anactive block can activate itself causing a second allecation of
its variables. Each econeurrent activation of ablock therefore has
its own independent copy of each variable. This allows for
recursive procedures and functions.

6.2 VAR Declaration

VYariables ure declared with the #ar statement. The general form of
the statement is as follows:

VAR <identifier>> : <iype definition>;

For example:

VAR |:Integsr;
ThisEmployee : Employee;

22 Background

7 Procedures and Functions

The concept of 4 group of statements which perform a given
opcration is certainly not new to a BASIC programmer. The gosub
statement allows exactly this type of operation. In Pascal, the
procedure slatement allows a programmer 1o set aside a group of
statements explicitly for this purpose.

In BASIC the concept of a function is provided by the DEF F'N
statement, This statement provides the ahility 16 define single line
functions. In Pasecal, the funetion statement (which i¢ almost
identical to the procedure stalement) provides a general function
definition capahility.

The facilitieg found in Paseal for defining procedures and funelions
are very powerful and constitule one of the major characteristics of
the Pascal language. As deseribed in the seetion on The Pasend
Progras Pagcal ig a bloek structured language with procedures
{and functions) at the heart of this structure. It is important to read
and understand this section in order to use the features of the
language Lo their fullest,

7.1 PROCEDURE Declaration

The procedure statement is a declaration statement which provides
the ahility to construet a complete subprogram which may itself
conlain subordinate subprograms (procedures and functiong). The
general form of the declaration is as follows:

PROCEDURE - identifier>- <Zformal parameter definition_>;
< declaration statements>

BEGIN
<axecutable statements -
END

Ag mentioned in the seclion on Block Structure the <declarution
stetements> BEGIN <erecutable statementss END conslitute a
<bloek> which is exactly the same as a program’s <block:>. The
<formal parameter deflinition>> c¢an be null if there are no
parameters to pass to the procedure or can have the following form
if parameters arc present:

(<parameter:>; <parameter>; ... <parameter>)

Rackground 23

ﬁ
m
o
-
o]
—

Where the form of </parameter.= is;
VAR <lidentifier>, ... <identifier> : <type identitier>-
OR
<identifier>>, ... ,<identifier™ : <type identifier-

The war keyword is present when the parameter is a reference
parameter and iz not present when the parameter is a oufue
parameter. Thedifference between these two classes of parameters
is important and iz discussed in full in the next scetion on Procedire
Inanoration. Following are some examples:

PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 :
Inieger);
BEGIN
Parm1 := Parm2 + Parm3
END;

PROCEDURE TestProc2;

BEGIN
IF GiobalVar1 >> 0 THEN GlobalVar2 ;= 5;
GlobalVard -~ GlobalvVar1 + 3

END;

Yeou notice in the first example that Pavm {18 a refercnee parameler

and Puarmz and Parm3 are value parameters. In the second

example GlobalVart, Global Var2and Global Var$ are all variables
deelared vutside the procedure TestProc2, Sce the scelion on The
Poscal Prograsm for 4 discussion of seope.

7.2 Procedure Invocation

[nlike BABIC s gosuh statement, Pascal has no calf statement for
invoking a procedure. In Pascal, a procedure is invoked by name,
That is, a procedure declaration implicitly defines a new executable
stalement which is the procedure name and is lormatied acearding
to the <parameter definition> provided in the declaration. The
general form of a procedure invocation is:

<Jjdentifier>> <actual parameters -

If the corresponding <formal paramcter definition> in the
procedure statement was null then the <Cactual parameters>> must
alzo be null. Otherwise the actual parameters must agree with the

furmal parameters in ordering, Lype and number. Some examples:

24 Background

TestProc1 (I, 3, J*5);
TestProc2

Before explaining the above examples, it is necessary to define what
reference and nelue paramelers are. A formal reference parameter
represents the actual rariable used when the procedure is invaoked.
The parameter used in the procedure invoeation smust be avariable,
In this case, all references to the formal parameter (the one in the
procedure declaration statement) will reference the actual
parameter (the one in the procedure invocation stalement). This
means that the actual parameter's value will be changed if the
procedure modifies the formal parameter’s value,

A formal vafue parameler represents the value of a greneral expression
used when the procedure is invoked. In this case, any tyvpe compatible
expression is allowed as the acfunal parameter since a separate
allncation of memory is made when the procedure is invoked and is
initialized to that value. The formal parameter in thiz caze
represents its own memory ares ralher than that of another
variable. Changing the formal parameter in this case, does not
change the value of any other variable.

In the first example above, I is a referenee parameter and 4 and J*5
are value parameters. When TestProct 1s invoked in this case, Tis
assigned the value g + J*5. Bince TestProe2 has no formal
paramcters, it therefore has no actual parameters,

7.3 FUNCTION Declaration

"The funetion statement. is almost identical to the procedure statement
deseribed above. This is because a funciion is 2 special lype of
provedure which is invoked in a different manner from a regular
procedure and has a typed value assoeiated with it. The syntaxof the
Sunetion statemnent is as [ollows:

FUNCTION <identifier> <formal parameter definifion>> :
<type identifier -,
< declaration statements >
BEGIN

< executable stalements >
END

The only difference between the function statementl and the
procedure statement is the beginning keyword (FUNCTION

Background 25

instead of PROCKDIURE) and the presence of the < type ideniifier>
following the parameter definition. Following are some examples:

FUNCTION TestFune (VAR Parmi : Integer; Parm2, Parm3 :
integer)
: Boolean;
BEGIN
Parm1 := Parm2 + Parm3;
TestFunc = (Parm2 > Parm3)
END;

FUNCTION TestFunc2 : Integer;

BEGIN
IF GlobalVar1 > D THEN GlobalVar2 :=5;
GlobalVar3 = GlobalVar1 + 3;
TestFunc2 = GlobalVar3 * 2;

END;

You'll notice that these examples are similar to these used in the
Procedure section except that there is an extra assignment statement.
al the end of each function. These statements use the funetion name
on the left side of the assigment symbol to assign a value to be
returned by the function, Every function is required to have at least
one assigment statement which performs this task. If more than one
assigment takes pluce, the last assigment made belore the function
terminates is the one that will be used. A funetion can only he of a
simple type.

7.4 Funetion Invocalion

A function is invoked by referencing its name {and rupplying any
required actnal parameters) in an expression. In this form the
Jfunetion relerence is similar to a reference w a variable. Following
are some examples:

IF TestFunc (1, 3, J*5) THEN | == 0;
Globalvar2 := TestFunc2 * 5

Note that for purposes of recursion there is no ambiguity as to
whether a function is being recursively invoked or having its
returned value set for its current invocation. An snvoeafion oreurs
when the funetion's nume (and actual parameter list) ure found inan

expression. A function’s returned value is set when its hame alone is
found on the left side of an assipment statement.

26 Background

7.5 FORWARD References

In Paseal, & funetion or procedure may be referenced by another
procedure or function only if the funetion or procedurce being
referenced has been defined previous to the procedure or function

. making the reference. There are limes when this restriction is
undesireable, The forward deelaration in Pascal solves this little
problem.

A forward reference is allowed only if the procedure or funetion
being referenced has been defined wsing the forward declaralion.
The following is an example:

PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 :

Integer);
FORWARD;
PRQCEDURE TestProc2;
VAR |, K, M : Integer
BEGIN
K:=17; M := 23;

IF GlobalVart <Z 0 then TestProc (K, M);
IF GlobalVar! > 0 THEN GlobalVar2 := 5;

. GlobalYar3 := Globalvari +3
END;
PROQCEDURE TestProc;
BEGIN

Parmi = Parm2 + Parm3
IF Parm1 <> 40 THEN TestProc?
END;

Note that TestProe has been declared as forwerd and is referenced
by TestMroc, even though TestProe is deflined after Test Proc?, The
same rules and conventions apply for funetions as well.

Background 27

8 Expressions and Assignments

Expressions are the cembinalion of constants, varigbles and
functions with operalors to form some result. This result ean then he
stored (assigned)in a variable, used as a parameter to a procedure
or funetion, used as a subscript in an array specification, used to
control the execulion of the program or output to a file.

8.1 Factors

The [undamental elements of an expression are called frefors.
Factors arc the constants, variables and [unctions previously
mentiohed. Following are some examples of factors:

{* Constants *)

2

IA!

"JOES"S PLACE’

(* Variabies *)

|

MyColors[1]
OurColors[137,3]
MyRecord.isColor

(* Functions *)
CHR (65)
ABS (-3)

The value of a factor is dependenton what kind of factor that itis, A
constant has a single given valuethal is ulways used whenever that
ennstant is referenced,

A variable’s value will be potentially different each time that. it, s
referenced. The last value that was stored (assigned) to that
variahle before a given reference will be the value of that variable
for that reference.

In the example abave you can see u reference to an array type
variable, The value contained in the square brackets ([J) (which can
be a full cxpression) is cailed a subsermipt and identifies which
clementof the array is being referenced. Note that every element of
an array is considered to be an independent variable, When an
array has more than one dimension, the suhscripts are ordered
according to the fype definition for that array and are separated
from each other iy commas.

4.3 Background

A reference to a field withina record is also a factor. This is done by
naming the record, appending a period (.) and then naming the
field. If the record iz an element of an array, then the period follows
the right bracket. For Example:

ArrayOiRec|i]-Field1
Record1.ArrayField|i|.SubField1

Nuolice that erraysof records and records of arrays can be refercnced
by following the above rules.

A reference to a function will actually cause the funcilion to be
invoked at the point of reference. The value relurned by that
invoecation will be the funetion’s value for that reference.

Anoctlher type of factor is the infine set:

{* In-Line Sets *)

[Green..Blue, Yellow]

[0.'9, A2

1,5, 7,1.50]
An inline set, iz a sef value that is built from a Hst of itemized ordinal
cxpressions and subranges as shown above. Note that an inline set
must always be prececded in an expression with some indication as
to what type it should assume. Thercfore, it eannot be used as the
firat factor in a boolean expression,

A final type of factor is a dereferenced pointer. Thisisareflerencetoa
variable whose address is in w pointer fype variable and can be made
by naming the pointer variable and following it with an up-arrow
{ *). The same syntax is used to reference the window of a file type
variable. For example:

PuVar
FileVar

8.2 Arithmetic Operators

An expression does not have tn have any operators so that a single
factor can be considered to be a full ex pression. However, freguently
we wish to combine one or more integer or renl type factors
arithmetically. This is done with the use of the following operators:

Rackground 29

+ Addition

- Subtraction
* Multiplication
! Real Division

DIV Imeger Division - quotient resuit
MOD Integer Division - remainder result

In addition to the above standard arithmetic operators. the DEFT
Pascal Compiler also pravides the following additional arithmelic
operators:

AND Bitwise logical AND

OR Bitwise logical inclusive OR
XOR Bitwise logical exclusive OR
LSR Bitwise shift right (zero fill)
LSL Bitwise shift left (zero fill)

Some examples of simple arithmetic expressions are as follows:

I+R {* sum of | and R, real result *)

2*3 (* product ol 2 and 3 *)

J7B (* real quotient of J divided by 6 *)

JDIVE {* integer quotient of J divided by 6 *}

I AND $1FF (* value of | with high 7 bits cleared *) .
JLSL 3 {* value of J shifted left 3 bit pasitions *)

8.3 Inleger/Real Expressions

Al the above operators (except the slash) can be used with iateger
fupes to create dnfeger type expressions. The plus (4], minus (-,
asterisk (*) and slash (/) can also be used with read Ly pes Lo create
ventd Lype expressiona,

You can also include Jateger lypes in rend expressions and DEFT
Pascal will aulomatically convert the iniegers w reals. However,
you must use either the PREUNC or ROUND built-in functions to
convert from real Lo integer. These are deseribed in the section on
Built-In Procedures and Functions. Following are somc examples af
expressions mixing integers and reals:

R:=1; {* legal *)

|~ 1.0; {* illegal *) .
R:=I1+R; (* legal *)

IFR+1=0THEN ... {* legal *)

IFI1+R~0THEN ... {* illegal *)

30 Background

In DEFT Pascalthe last expression is illegal because the expression
glarted out as integer bhefore the K was encountered. In standard
Pascal, this would be a legal expression.

. 8.4 Arithmetic Precedence

In the above examples we saw how two faclors could be combined
with an arithmetic operator. In general, there is no limit to the
number of faclors thal can be combined in a single expression. For
example;

1*dJ+5DIV3OR $FF00

The above example is a legal expression. Unfortunately it is not
immediately elear how it might be evaluated. This is because it is
notclear which order the operations are performed in. In Paseal, as
in most languages, this is resolved via rules of precedencs. For
arithmetic expressions Lhe operators are divided intotwo categories:
maltiplyinyg operators and addation operalors as shown below:

Multiplying Operators: * / DIV MOD AND XOR LSR LSL
Addition Operators: +-0R

. Expressions are generally evaluated from left to right with the
multiplying operations performed before the uddition operationa.
in the example abave, the evaluation would occur in the following

arder:
1 *d {* result 1 *)
5DV 3 {* result 2 *)
result 1 + result 2 (* resull 3 *)
resuli 3 OR $FF00 (* final resuit *)

Parentheses can he used to ehange this defauft order of operations.
In fact, the aboveexpression, although legal, i« generally considered
poor programming practice since it is not immediately clear how
the expression is to be evaluated. Al operations (both multiplying
and addition) within a set of parentheses are performed before the
resnlt is comhined with operators outside the parentheses. By
inserling parentheses in the ahove example we can change crder of
. evaluation as follows:

I * {(J + 5) DIV (3 OR $FF00)

Background 31

The parenthcses have chunged the order of evaluation to the
following:

J+5 {* result 1 *)
[* resuli 1 (* result 2 *)
3 OR 3FF0Q (* result 3 *)
result 2 DIV result 3 (* final result *)

Note in the above example that the * operation takes place before
the OR operation. That is due to the left-right nature of the
expression cvaluation, Note that parentheses may benested to form
cven a different evaluation as follows:

| * ((J + 5) DIV (3 OR $FF00))

The new parentheses have changed the order of cvaination Lo the
following:

J+5 (* result 1 %)
3 OR $FFOQ (* result 2 *)
result 1 DIV result 2 (* result 3 *)
I * result3 (* final result *)

Note that an expression inside a sct of parentheses is actually
conzidered a fuctor and is treated as such in all expressions.

8.5 Set Kxpressions

Set factors can be combined into expressions with the following
opcrators:

+ Union
Difference
* intersection

As in arithmetic expressions, two set factors are eombined with a
single operator to produce a single set resull. The above operators
produce Lthe following results:

® The Union of (wo sets produces a set. which eontains all the
elements present in cither the first or second sct.

® The Difference of two sets produces a set which contains all the
e¢lements of the [irst set which are not also in the second set.

® The Intersection of two sels produces a set whieh containg only
those elements which are in both the first and second sets.

32 Background

Intersection has precedence over Union and Difference,

8.6 Boolean Expressions

A Boolean expression has a true or fulse boolean result (this 13
aclually an 8 bit result). As in arithmetic and set expressions,
boolean expressions are formed with fuctors and operalors. The
hoalean operators are as follows;

NOT Logical NOT {* Unary *)

AND Logical AND {* Muitiplying *)

OR Logical OR {(* Addition *)

IN Set Membership

= Equals {* Relational *)

= Greater than

<! Less than

= Greater than or Egual {* Simple Types *)
Containment {* Set Types %)

<= Lese than or Equal {* Simple Types *)
Inciusion (* Set Types *)

< Not Equal

Unlikearithmetic and set expressions, hoolean cxpressions can take
any type factor as an argument. The only restriction is that they be
combined with relational operators and thal the lypes of both
fuctors arc the same. The nat, and and or logical operators require
boolean type factors (in order to produce a hoolean result). For
example:

BoolVari AND BoolVar2
Integer1 = Intager2
MyCalor1 > MyColor2

The i operator is used lo determine whether a given ordinal value
inthe range 0..255 is eontained within a set.of the same ordinal type.
For example:

MyChar IN['A’..2Z°]

The <= and > operators have a special meaning when applied to
sets.

¢ SetContainment(>=) produces a frux resull if 11l the elements of
the seeond set are also elements of the first sct.

* Set Inclusion (<) produces a frue result if all the elements of the
first scl are also elements of the second set.

Background 33

Precedence in boolean expressions is about the same as in arithmetic
expressions with the following addition: after all multiplying and
addition operations have been performed, a single relational or set
membership operation may be performed. Note that asin arithmetic
expressions, parentheses can be used to alter the order of cvaluation
and to break the expresgion down into a number of factors. The
following examples illustrate this:

J=1TAND K <=L (* illegal expression *)
(J =13 AND (K <= 1) (* legal expression *)

Where I, J, A and L are all integer variables. The following
evaluation takes place:

J-I (* boolean resuit 1 *}
K<=L (* boolean resuli 2 *)
result 1 AND result 2 {* inal boolean result *)

In the following example, changing parentheses changes nol only
the order, but also the required intermediate expression types:

J=1AND {L <= K}

The above expression is illegal unless 1 and J are boolean type
factors. Evaluation is as follows:

L<=K {* boolean result 1 *}
| AND result 1 {* boolean result 2 *)
J —result 2 {* final boolean result *)

Notonly factors, but arithmetic, set and boolean expressions may be
combined via relational operators as follows:

1*3 == J+2

Set1 <= Sef2 + Setd

{l IN |5, 6, 20..30]) = OnOfVar

(L+2)*1 >= K AND $1F0

In the lasl example, the AND operator is an arithmetic operalor
rather than a boolean operator.
8.7 Assignment Statement

This statement is similar to that found in BASIC. The symbol of
assignment is different than BASIC's to distinguish it from the
equals sign. The general lorm is as follows:

<Jdentifier>> 1= <lexpression >

34 Background

The <idenliler:> on the left must be a variable whose value isto be
set to that of the expression on the right after the expression is
evaluated. Following are some examples:

I:==1*((J + 5) DIV (3 OR $FF00})
. BoolVart :=1=J

In the second exumple, BoolVar is assigned either a True or False
value depending on whether 1 is cqual to).

Background 356

9 Compound and Control Statements

Stalemenl execution normally starts with the statement
immediately following the BEGIN keyword in the main program
block., Exccution proceeds sequentially with each subsequent
statement unlil the KNI at the end of the main program block is
reached. If any other blocks arc activated in the inlerim. execution
within that block proceeds in a similar fashion.

This section primarily describes the statements that allow vou to
alter this gencral flow of execution,

9.1 BEGIN Statement

This statement allows a programmer Lo inelude more than one
staternent in a place in the program where normally enly one
statement would be allowed. This statement does not cause any
change in the order of statement execution but is frequently used in
conjunction with the control statements deseribed below which do.
The following is the general form of the BEGIN statement:

BEGIN
<executable statement> ;

< exg;utable slatement’>
END

Nate that the semi-colon is used to separate rather than terminate
stutements. Since the DEFT Pascal Compiler supports a nall
statement, you can put a semi-colon after the lasl executable
statement before the KNS

9.2 IF Statement

The {F statement provides the capability to exceute cither one of
lwo statements based on the valucof a hoolean expressian, Following
is the general form of an JF statement:

IF <“hoolean expression> THEN <executable slatement:>
ELSE < execulable statement -

Il the boolean expression is true then the <executable statement™>
Tollow ing the THEN keyword is executed otherwise the <Zexeeutable
statement’> following the FLSFK is executed. The else clause is
optional and if it is not present, no statement is explicitly executed

36 Rackground

