when the boolewn expression s ferdse, In any case, after the then or else
clause (if present) is executed, control falls through to the next
statement following the fF statement. Following are some examples:

IFI<JTHENI:=1+1ELSEJ:=J + 1;
IF J*2 = 50 THEN BEGIN

J:=5;

1:=1*3

END

The last exampleshows how the BEGIN statement can be used with
the IF statement.

9.3 WHILE Statement

The WHILE statement provides the capahility of repefitively
executing a given statement while a boolean expression istrue, This
15 one of Pascal’s structured lovpwng constructs. The general form of
the WHILFK staternent is az follows:

WHILE < bhoolean expression> DO <execwlable statement >

In the WHILE statement the <haolean expression> is evaluated
and il found Lo be frue, the <Jexeculable statement> following the
130} is exceuted and the process is repeated. This continues until the
<hoolesn expression> is found o be false. At that time, the
<executable statement>-1snot executed and control falls through to
the statement following the WHILA statement. Note that i the
<hoolesn expression>s is fulse when the WHILE statement 1s first
executed, the <<executable statement> following the 130 is not
executed at all.

Normally, the <executable slatemeni> will changs the value of gne
or more of the variables used in the <hoplean expression>. Following
arc some examples:

WHILE| <JDOI:=1+3;
WHILE J > H3 DO BEGIN
J=Jd73;
l-1+1
END

Background 37

94 REPEAT Statement

The REPEAT statement provides the capahility of repetitively
executing a given staternent until a boolean expression is false. The
general lorm of the REPEAT statement is as follows:

AREPEAT -Zexecutable statement™-; .

<_executable statement’>
UNTIL < boglean expression

In the R PRAT statement the <execulable slatement>>s following
the REPHEAT are executed. The <lboolean expression> is then
evaluated and if false the process is repeated. This continues until
the <boolean expression=> is found to be true. At that time, control
falls through to the statement following the [/ VT 1.. Notethat if the
<hoolean expression’> is frue when lhe REPRA Tstatement is first
execuled, the <Zexecutable statement>s following the REPEAT are
still executed ane time,

Normally, the <executable statementi>s will change the value of
une or more of the variables used in the <boolean expressien;>. The .
following are some examples:

REPEAT | =1+ 3UNTIL I > J;
REPEAT

J:=Jd /3

I:=1+1
UNTILJZ1+3

9.5 FOR Statement

The FOR statement provides the capability of repetitively executing
a stutement while explicitly varving an ordinal variable. The
general form of the F'OR statement i as follows:

FOR < assignment statement>> TO < expression-> DO
<Zexeculable statement

or

FOR <Zassignment statemeni> DOWNTO ~expression> DO .
<execulable statement>

b1 Background

In hoth the TOand DOWNTO versions the <Cassignment statement
s execuled [irst. The ordinal variable identifier to which the
assignment is made is used as the loop counter. The testing and
varving of the loep counter ig different in the 70 and DOWNTO
VEPsions,

In the TO version, the following sequence is performed:

1. If the locop counter is greater than the <lexpressions>, processing
in the FOR loop is terminated and contral falls thraugh to the
nextstatement following the FOR loop. Otherwise, the following
addilional steps are performed.

2. The <executable staternent™ (which may be a compound
statement) Is executed.

3. Theloop counter is advanced tothe next higher value (see SUCC
buili-in Function),

4, Control goes back to the first item in this sequence.
In the DOWXNTO version, the following sequenece is performed:

1. If the loop counter is less than the <expression>>, processing in
the FOR loop is terminated and contrel falls through to the next
statement following the FOR loop. Otherwise, the following
additional sleps are performed.

2. The<executable statement> (whichof eouirse may be a compound
statement) is execuled.

3. The loop counter is reduced to the next lower value {see PRED
built-in function),

4. Control goes back to the firsl ilem in this sequence.

Normally the <lexecutable statement> will reference the loop
counter although this izn't always the case. Following are some
examples:

FOR!:=1TO 3 DO MyColors|i] := Red;
FOR J :=0T0O 200 DO
FOR | =1 TO & DO QurColors[J,I] := Yellow;
FOR ColorVar ;= Green TO Orange DO
NumbersVar| ColorVar] := 3;

In the second example, the <lcxcculable statement > of the first FOR
statement was itgelf a FOR stalement. The second FOR loop will
execute to corpletion (6 iterations) for cach itcration of the first

Background 34

FOR loop. [n the lagt example, the loop eounter is an cnumecrated
lvpe and is uzed as the subseript of an array type variable.

9.6 CASE Statement

The CASE statement provides the ability to execute one of several
statements depending of the value of an ordinal expression. This
ordinal expression is called a seleclor. Follow ing isihe general form
of the CASF statement:

CASE Cordinal expression> OF
<Zconslant list>> : <Zexecutable statement’=;

<Zconstant list> : <executable statement >
ELSE < executable statement>>
END

The <ronstant Hsl>> 1s a list of Lype compatible conztanis separated
with commas, The <ordinal expression’>is evaluated and compared
with each constant sequentially in cuch <wonstant list>. If the
<“prdinal expression’ is found to equal a constant, the comparing is
stopped and the <exceutable statement>> immediately following
that particular constant is executed and control iz then passed to Lthe
next statement following the CASE expression. If none of the
constants mateh the <ordinal expression> and the FLSE elause is
present, then the statement following the KLSE is executed.

The FLSE clause is 2 common extension found in most Paseals
tsometimes asan OTHERWISE clausce) [isoplional, butif present
must Tollow the last case and precede the KNS Following iz an
example:

40 Background

CASE 1*5+J OF
7.9:J:=15;
11,12,13,14 : BEGIN | := 3; J := 2 END;
1:1:=J+5
ELSE J:= 0
END;

CASE MyColors|i] OF
Red, Orange : MyColors{1] := Green;
Blue:1:- 3
END

In both examples, vou will notice al least one case which has enly 1
eonstant in its <constant list>>. In the second example, the ordinal
expression is of an enumerated Ly pe,

9.7 GOTO Statement

The GOTO statement provides the ability to cease program execution
at the point of the (OTY) statement. and then resume program
execution at the poinl in the grogram identified with the
corresponding label specified in the GOTO stutement, For those
used to programming in BASIC, this featurc is very familiar, The
DEFT Mascal Compiler, however,only allows a GOTO to reference
a {nhe! that iz defined within the same block as the GOTO. The
following i3 an example;

GOTO 580;

Where 580 is 2 lubel used wo identily anexecutablestatement within
the same block as the GOTO statement.

9.8 EXIT Statement

The EXIT stalement provides the ability to deactivate a block
befure coming (o the block's KN statement. The KX T statement
ishot partof standard Paseal buta form of it is [ound in a number of
commercially available compilers. The syntax is as follows;

EXIT

When this statement is eneeuntered, the active block in which it is
found is deactivated and no further staternents within that hlock arc
executed. Note that the block being referred to is one associaled
with a procedure, fuaction or program.

Background 411

Typieally, the KXIT slatementis used in canjunction with vne of the
other control statements in order to eondilionally continue execution
withina block. KXTT ¢an be used to deactivale the program block in
which case program execution lerminates and eontrol returns to
BASIC.

9.9 WITH Statement

The WITH statement provides Lhe ability to refercnee multiple
fields within the same record with one statement. One or more lields
of a record can be referenced within a WITH slatement by their
field names alone provided the remaining part of the name, i.e. the
record name (eventually qualified by field names), is mentioned in
the WITII statement. The syntax is as [ollows:

WITH <variabie’> DO < statement>;

For example:
WITH RecordMame DO Field! .= X;
This example iz equivalent lo:

RecordName.Field1 := X;

The following is anciher example: .
WITH RecordName.GroupName DO
BEGIN
Field1 :— X;
Field2 := Y;
Fieldd := Z;
END;

This cxample is equivalent, to:

RecordMame.GroupName.Field1 := X;
RecordName.GroupName.Fiald?2 :- Y;
ReceordName.GroupName.Fieldd := Z;

Several WITIH statements ean he nested. Butl since field identifiers
are local to the record in which they are defined, different records
eah have identical field identifiers. In the case of nested WFTHs,
vwnership of like ficld identificrs is determined hy the innermost
WITH statement. This is consistent with the aseal rules of scope.
An example of nested WITH is as follows:

42 Background

WITH Record1 DO
WITH Record2 DO
WITH Recordd DO Fieid1 = X;

DEFT Pascal allows up to cight levels of WITH nesting. Also, the
<variable> in a W/TH statement cannot contain a pointer
dereference or 4 subseripted array.

Rackpground 413

10 Input/Output

Any program is telally useless unless it can, in some way, change
something external to the processor. Input/Quiput stalements
allow a program to reccive vutside slimulus (Input) and provide a
response {(Output).

With DEFT Pascal, the primary input statements are resef, get,
rend, rendin and the builtin functions eof and eoln. The primary
output statements are rewrite, pul, wrile, writeln and elose. These
statements and builtin functions provide a device independent
mechanism for reading data from the keyboard, cassette and disks,
and for wriling data Lo the screen, printer, cassette and digks.

10.1 File Names

The device or file(a portion of the total storage on a cassette or disk)
to heused in aseries of Input/Output operations is identificd with a
File noeme, The format of a [ilename is as lollows:

<filename>/<ext=<<devices

This iz the same format that BASIC uses for Disk TMles, However, by
extending the device numbers, DEFT Pasecal also uses it for the
kevhoard, zereen. tape and printer. The <filename>is 0 to 8 ASCII
characters. The extension is 0 o 3 ASCII characters, The device
numbers range from -3 to 3 with the following meanings:

-3 Keyboard/Screen
-2 Printer
-1 Casselte Tape

0 Disk drive 0

1 Disk drive 1

2 Disk drive 2

3 Disk drive 3

As can be seen, the positive deviee numbers corresponds to BASIC's
drive numbers. The negrative device numbers correspond tn BASIC's
device numbers with the exception that the Keybourd/Screen is -3
rather than 0.

All of the fields are optional in different cireumstances. When a
device number of -3 or -2 is specified, there is no need for a
<filename>> or <lextension’», When a deviee number of -1 i
spoecified, the <extension>s is nal used. Fordevies numberz 0 thr 3,
a default <extension>>is always present depending on the program
being run. When a deviee number i3 not specified, () is assumed.
Following are some examples:

44 Background

-3 Keyboard /Screen

-2 Printer

MYFILE:-2 Printer (filename ignored but allowed)
TAPEFILE:-1 Cassette Tape File

DISKFILE/ASM Assembler source file on disk drive 0
F2NAME:1 File is on disk drive 1, default extension used

10.2 File Variables

Rather than giving the file name in each Tnput/output statement
and function, a file type variadle is used. This file type variable iz
initialized by a reset or rewrite slalement which associates iv with a
file name. Other statcments and functions which subzeguently
reference this variable then canse operations to be performed to the
corresponding device or portion thereol.

A file variable has a windme which ean beread (input)or wrillen Lo
{output) depending on how the file variable was originally initialized
(using the reset or rewrite statements). You access thiz window by
derefarencing the file variahle much like the way a pointer variable
is dereferenced. The provedures and functions deseribed below
provide the ability to move data between this lile window and an
external device or file,

10.3 INPUT and OUTPUT File Variables

T'here are {wo predefined file of char (tex1) variables available with
DEFT Pascal. The variable inputis pre-initialized for access 1o the
kevhoard as though a RESET(INPUT, :-3') statement (see below)
had been executed before your program hegan. The variable outpud
is pre-initialized for access to the sereen us though a REWRITL
(OUTPUT. -3 slatement (see below) had been execuled before
your program began.

The existence of these two pro-defined and pre-initialized variables
provides the following benefits:

1. Youdonot necd to use reset or rewrdle Lo initialize these variables
before using them in rendln, writeln, ete.

2. When using read. readin, eoln and eof you can omit the <file
variable> parameter in the statement and the defanlt file
variable inpud will be used.

"

Background 4]

-

3. When using writeln, write, page and eloze vou can amit the <file
variable>> parameler in the statement and the defaul; file
variahle autput will be used. Note that although it is permissible
to use cfnse with output, it is not necessary.

NOTE: The it and output files are actually the same file which
haz been speeially initialized o allow both input from the kevhoard
and outputto the sereen. For thisreason, it iz recommended thal you
do not. use the reset or rewrile stalements with these files. When vou
wish to do I/O 1o the printer, cassette or disk, sctup a separate file
variable as shown in the general 1/0 examples further on.

10.4 Overall Example

Below isan exampleof a simple program that promptsat the sereen
for a filename to be entered and then reads that file and writes it to
the printer. The filename that is entered can be any of those
described above in the section on File Names.

PROGRAM CopyFile (Input, Oulpul);

VAR InFile, QutFile : Text;
FileName : String;
Data : String (255);

BEGIN
Page; {* clear the screen *)
WRITE {'FILE NAME: ‘};
READLN {FileName);

RESET {(InFile, FileName);
REWRITE (OufFilg, ":-2');

WHILE NOT EQF (InFile) DO BEGIN
READLN (InFile, Data);
WRITELN (OutFile, Data);
END;

CLOSE {(OutFile);
END;

In this example, InFile and OwiFile are file variables and 2-2'is a
string constant which contains a file name. The reset statement
associates the file whose name has been entered ino the string
varighle FileNoawe with the file variable fnf'ile and initializes it for
reading, The rewrite associates the printer (device number -2) with

46 Background

ithe file variable OutF4le and initializes it for writing.

The while loop causcs a check for end of file on Mnf%le BEFORE
reading the first record. The clnse statement at the end, forces any
remaining buffered data to be written. When writing to the printer
or the screen it is not absolutely necessary to do the close, but it is
recommended in caze the program may he changed to cutput to the
dizsk or cassette.

10.5 Lazy Keyhoard Input

Inorderto provide an easy touse interface for the kevboard, DEFT
Pascal incorporates the concept of lazy keyboard wnput. This
involves waiting until & read or readin slalement is executed before
actually performing an inpul from the kevboard.

Standard Pascal requires that the internal buffer be prefilled so
that the eof and ¢oln and file dereferencing operations can be
performed. If this were done for keyboard input, you would have to
enter data into the keyboard immediately after executing any
Pascal program (before your program actually begins execuling
any statements). This weuld make it very difficult for you to
svnchronize your prompis (via wrile and writelp statements) with
the corresponding inputs (via read and readin staterments).

The result of the {azy lreybowrd wnpml is that eof and esln refleet the
status as of the end of the last read or veadln statement. For
example:

WHILE NOT EOF DO BEGIN

WHILE NOT EOLN DO BEGIN
READ (X}
WRITE (X);
END:;

READLN;

WRITELN;

END;

If the first key that you hit is the CLEA R key (toindicate eof and entn
on the keyvboard) the inside loop will still execute onee sinee the
prompt does not appear until the READ (X): statement is being
executed. X will retain whatever value it had belore the read unless
A 15 & char in which ease it will contain & CHR (13).

Background 47

Remember, {azy keyboard input is only used with the kevhoard.
Your ecassette and disk input operations are pre-buffered and
conform to the Pascal standard.

10.6 CLOSE Statement

This statement is required for output files (Initialized via rewrite) to
cagsetie or disk in order to cnsure that al! data has been writlen to
the device and the directory or trailer has been written. It may also
be used for screen and printer files buil has no effect. Once this
statement is executed, the file variable is considered uninitialized
and must be initialized again (with either rewrite or reset) in order
to be used. The format of the statement is:

CLOSE (<file variable>>)

Asmentioned above, if <file variable>> is omitted, the output [ile is
assume.

10.7 EOF Function

This is a4 Boolean function which specifies whether end of file has
been reached on a particular file. This funetion can be used on a file
of any type. Its definition is:

FUNCTION EOF (VAR FileVar : Tex!) : Boolean;

It can also be used as though it had no parameter and the defaull file
input will be assumed. Note that egf can be indicated from the
keyhoard by terminating the last line with the CLEA R key instead
of the KNTHRE key.

10.8 EOLN Funetion

This is 4 bouolean function which speeifies whether an end of line
character is next in the window on a file aof chor. Ts delinilion is:

FUNCTION EOLN (VAR FileVar : Text) : Boolean;

It ean also be used as though it hasno parameter and the defaultfile
rapad will be assumned.

48 Background

10.9 FILEERROR

This is an tnfeger function which returng an indication of whether a
file I/Q error ozeurred on a particular file and what the error waus if
i1 did occur. This function ean be used with a file of any type. Its
definition is:

FUNCTION FILEERROR (VAR FileVar : Text) : Integer

It can also be used as though ithad no parameter and the defanlt file
suput will be assumed. The uleger return is a number from 0 Lo -5.
The pussible error numbers are as follows:

® (), No frror
e -1, ffnd of File - The end of 4 given [ile has been reached.

® -2 [0 Error - This indicates that some hardware oriented
problem cecurred,

® 3. File Not Found - The file specified was not found.

o -4, Hlegal Gperotion - This indicates that you attempted a read
operation on an output file or a write operation on a input file. It
can also oceur if you attempt to do a resef to the printer,

® -0, Device Full - While doing a rewrite or other write operation,
the deviee became fill.

NOTE; eof will return a tiue anytime filegrror would relurn 4
non-zero. Fileerror is a DEFT Pascal extension and is not part of
standard Pascul,

10,10 GET Statement

This statement (implemented as a built-in precedure) is used tn
input data from cassettc or disk via a fife that was previuosly
initialized with the reset proacedure. The format of the statement is;

GET (<tlte variable:>)

The action of this procednre istomove the filc window over the next
clement in the file. The get stutement cannol be used in DEFT
Pascal with a file of chor,

Background 49

10.11 PAGE

This procedureis used to output an ASCI formfeed Lo the specified
file. When a formfeed is output to the screen, the equivalent of
BASIC’s CLEAR is performed. When a formfeed iz outpul to the
printer, it will skip to the top of the nexl page. The format of the
stalement is:

PAGE (<file variabie>)

As mentlioned previously, if <Zfile variable> is omitted, the QUTPUT
file variable i3 assumed.

10.12 PUT Statement

This statement {implemented as « built-in procedure) is used 10
output dala Lo cassette or disk via a file that was previously
initialized with the rewrite procedure. The format of the statement
is:

PUT (file variable>)

The action of this procedure is 1 output the contents of the file
window to the external deviee or file and then empty the window.
The put statement cannal be used in DEFT Paseal with a file of
cher,

10.13 RESET and REWRITE Statements

These statements are used to initialize file 1ype variables for use
with subsequent Input/Output statements and functions. You cun
think of these statements as procedures with the following
definition:

PROCEDURE RESET (VAR FileVar: Text;
VAR Filename : String;
VAR DefExtension : String);

PROCEDURE REWRITE (VAR FileVar : Texi;
VAR Fllename : String;
VAR DefExtension : String);

You will only need to use oneor the other of the two statcments. fleset
initializes the File Var for input from the specified #ilename. When
using resef with a disk or cusselte [ile, a file by the name of Filename
must already exist on that device.

50 Background

Rewriteinitializes the Fiile Var for output to the speeified Falenamie,
When using rewrite for outpul lo disk, if the specified disk already
has a file by the name of Filenaine, it will be deleted. A new file is
Lthen ereated by the name of Filename. Omn eassette, a file is created
by the name of Fileiiame at the current spot on Lhe tape.

The DefFrtension specifies the default filename extension to use if
ane is not included as pard of the #ifename string. This parameter is
optional and if not present the defaull extension is blank.

10.14 READ Statement

This staternent is used to input data from the kevboard, caszette or
disk via a file thal was previously initialized with the resef
procedure. The format of the statement is:

READ (| <file variable>-,j <_variable>-, ... <variable:-}

As mentioned above, if <<file variable:> is omitled. the [ile Gl is
assumed to be referenced.

Reading froma Typed File - When using rend Lo read from a fife of
<fypes> where <fype> is not ehor, the <Zany variable> must be of the
same Lype ag the file, When the read is executed, the size of the
Ztype is used to determine the number of hytes to transfer.
Kszentially, each rend returns the next sequential oecurance of the
<typaerin the fife. For exumple, BEA DF, X)isexactly thesame as:

X=F",

GET (F);

Note that typed files can only be used wilh casselte and disk.

Reading from a FILK OF Char - If the </file variableX» is a file of
ehar then the file is assumed Lo consisl ol 4 setofl feres and the action
of the READ (F,X) statement depends on the type of X, The
following describes the legal fyppes of X and the agseciaied actions of
the reod statement:

1. Char - The next bywe of the line 13 direetly assigned.

2. String - The value of Lhe siring becormes the valne of the
remainder of the line. The line is truncated if necessary Lo [ilin
Lhe siring.

3. Leal - The next group of characters delimited by blanks und/or
end of fire characters is processed by ercodereal and the result iz

Background 3l

stored in the variable.

4. Inieger - The next group of characters delimited by blanks and,/or
end of line characters 1s processed by eneode and the result is
atored in the variable.

5. Beolean - Thesame asinteger exeept that only the numbers 0 (for
FALSE)and 1 (for TRUE) arc legal. You will gct unpredicable
results with other values.

6. Frnunerated - The same ag integer except that only the subset of
numbers (¢ through 255 that apply to the given type are legal.
Other valueg will convert to non-existent members of the type.

Some examples of uze:

READ (IntVar, IntVar2); (* integer from keyboard *}
READ (TapeFile, StringVar); (* string from cassefte *)
READ (DigkFile, CharVar); (* char from disk *)

READ (KeyBoardFile, ColorVar) (* enumerated irom keyboard *)

10.15 READLN Statement

This statement is identical to the read statement when used with
typed files and 1s almost the same when used with a file of char
except that after all the variables are vead, the window is moved
past the next end of line character,

The readln statement ean be used with no <variables>> in order to
position the file window past the next end of line character without
reading a data before that peint.

10.16 WRITE Statement

Thizstatemept is used toontputdata to thesereen, printer, casselie
or disk. The format of the statement is:

WRITE (file variable>~, -_data><width>:<decimal >,...,
<Zdata <Twidth><Jdecimal)
As mentioned above, if <Ifile variablel> is omitted, the file outpnt s
assurmed lo be referenced. The action of thewrite stalement depends
on the type of the <<file variable>,

Writing to a 'V'vped File - 1f the < file variable>: is not a file af char
then the [le is referred Lo us 4 yped file and the action of the wrete
(7, X} statement is exactly the same as:

52 Background

Fri=X
PUT (F);

where the type of the file " must be the same as the type of the
variable X. Essentially, the current value of the variahle X 15
assigned to the next element in the file F. The <width> and
<deeimal> parameters cannot be specified.

Note that typed files can only be used with cassette and disk.

Writing To a File of Char {Text) - If the <file variable>> iz a file of
chur then the action of the wwie (F, X} statement depends on the éype
of X. The following describes the legal types of X and the associated
actions of the write statement:

1.

fdey |

B

Char - The next byte of the file is direclly assigned fram the
contents of the character followed by <width>>-1 blanks. The
<decimal> parameter must not he specified.

. String - The value of the string iz output. If the <widlhZ>» is zeroar

not present, the number of columns reserved will be the size of
the string. If the <<widlh>> is less than the size of the string, only
the first <<width:> characters will be output. If <widlh> is
s¢realer than the size of the string, blanks will be output following
the string. The <decimal> must nol be spevified,

. Runt - The deenderen! procedure ig used wo convert the real to the

string of characters Lo output. The <<width> specifies the size of
the ASCIT reprosentation to output. If the <widih > is lousmall Lo
fit the number, asterisks are output to indicate overflow. The
default value is 6.

The <Zdeeimal:> specifies the number of places to the right of the
decimal point that.should he output. If </dceimal’> is not present
or neguative, scientific notation will be used.

. {ntager - The decode procedureis used to convert the integer to the

string of characters to nutput. The <width>> parameter specifigs
the size of the string to outpul wilth the number right-justified
within the string. If <-width:» isnotspecified it defaults Lo 8. The
<decimal>> parameler must not be specified.

. Boolean - Thesame as integer except thut only the nuwnbera (0 {far

Jalse} and 1 (for f34¢) are be output.

Erumerated - The sume s inleger except that only the subset of
numbers {) through 255 that apply to the given type are outlpul.

Background n3

Some examples of use:

WRITE ({IntVar); {* Integer to screen *})
WRITE (TapeFile, StringVar); {* String to cassette *)
WRITE (DiskFile, Charvarj; {* Char to disk *)
WRITE (PrntrFile, ColorVar); {* Enumerated to printer *) .
WRITE {IntVar:3); {* 3 column putput spec *)
WRITE (' The answers are ,R*3.4:10:2,
"and °,5/4.2::0); {* multiple lems in one *}

WRITE (Printer, “":30, ‘Centered Title');
(* forcing blank padding *)

Since wrile does nol oulput a carriage return al the end (as worideln
does) it is usnally used for prompting and for multiple werites to a
single ling foltowed hy a writeln (see following section).

10.17 WRITELN Statement

This statement is used to perform the same operations as a wife
statement. When used with a fyped file it 1s identical to the wrile
atatement. When uzed with a file of chur (Text) it is almost the same
except that alier all the specified outputs have heen made, a
carriage return fend of line character) is alsooutput. This statement

also allows no <Zdata’ items at all to be specified sa that only the .
carriage return will be output. All the examples shown for weite
also apply for sweriteln. Following are some additions:

WRITELN; (* carriage return to QUTPUT file *)
WRITELN {DiskFlle}); {* carriage return to DiskFile file *})
WRITE (CHR{13)) {* equivalent of WRITELN;)

a4 Bickground

11 Builtin Procedures and Functions

This zection deseribes a number of predelined functions and
procedures that are available with DEFT Iascal. Although
definition statements are shown in each of the dexcriptions, these
are purely forinformational purposes and are not tobe used in your
program.

11.1 ABS

This is an nleyer or real function that returns the abselute value of
the value parameter that is passed to it, The Funelion delinition is:

FUNCTION ABS (Value : Integer) : Integer
or
FUNCTION ABS (Value : Real) : Real

11.2 ARCTAN
This iz a real function which is uzed to compute the size of an angle
whose tangent iz passed to the function. 'T'he size of the angle

returned by the funeiton is in the form of a number of radians. The
funetion definition is;

FUNCTION ARCTAN (Tangent : Real) : Real

11.3 CHR

This is a character function that retnrns the ASCTI character for Lthe
binary value specified in the passed value parameter. The function
delinition is;

FUNCTION CHR (Value : Integer) : Char

Thiz funetion allows you Lo brewk Lype Trom integoer Lo char, See
Advanced Paseal for a more general and structuraed type breaking
language extension,

11.4 COS

This 1s a real funetion which is used tn compute the cozine of an
angle. The size of the angle [s passed (o the funetion in the form ol a
number of radians. The function definition is:

FUNCTION COS (Radians : Real} : Real

b |
ph |

Background

11.5 CURSOR

This iz a builtin procedure that allows vou to position the cursor to
anv of 512 positions on the sereen. The upper lell-hand corner is
position (. Consceutive positions proceed horizontally aeross the
sereen with the beginning of each line being a multiple of 32. The
lower right-hand corner is pasilion 511, The proceduredelinition is:

PROCEDURE CURSOR (Position : Integer)

Mote that postlion is taken modole 512 when used.

11.6 EXF

This is a rea! function which is used to compute the value of ¢
(2.718281828) to a specific power. The function definition is:

FUNCTION EXP {(Power : Real) : Real

11.7 LN

This is a rew! function which is used to compute the natural
logarithm of a positive number. The funetion definition 1s:

FUNCTION LN (Number : Real) : Real
11.8 MARK

This is a general procedure which is used Lo mark the current state
of the heap for use laler by the relense procedure. The procedure
defimtion is:

PROCEDURE MARK (VAR PtrVar : Pir)

where Ptr Var ean be a potnter to any fype. Any variables allocated
by the new procedure after saving the Aeap state in PrVar will be
deallovaled when relense is later called using the zaved Ptiwar.

11.9 MEMAVAIL

This is an énteger funetion which is used o determine the numhber of
hytes of memory remaining in the keap, The memaroil function isa
DNEFT Pascal extensinn and is not a part of standard Pascal. The
funection declaration is as follows:

FUNCTION MEMAVAIL : Integer,

56 Backgrouni

